Reduced Representation Bisulfite Sequencing Libraries

with EZ-96 DNA Methylation-LightningTM MagPrep

SMack Lab (adapted from Amanda Lea) Version 1.2, 7/29/2019

Reagents:

- AMPure XP Beads
- NEB Methylated Illumina Indexes Adaptors

*USE ONLY DILUTED adapters in subsequent protocol steps. Aliquot a small amount of adapters into a FRESH tube and dilute 1:20 such that the final concentration of diluted adapter is ~1 µM.

(MAKE SURE this is the NEB Methylated Illumina adapter, product number E7535S/L

- Msp1 enzyme (NEB: #R0106)
- 1X NEB CutSmart buffer
- Unmethylated phage DNA (Sigma: #D3654-5UN)
- EB buffer
- NEBNext end prep enzyme + buffer
- NEBNext Blunt/TA Ligase Master Mix _ enhancer
- NEB User Enzyme
- EpiMark Hot Start Taq and buffer
- ZymoEZ-96 DNA Methylation-Lightning[™] MagPrep

A few notes:

*Do not vortex enzymes or mixtures that contain enzymes

*Be very careful with bisulfite converted DNA. **Do not vortex it or freeze thaw it**. The DNA is single stranded, and therefore very fragile.

*Deep well plates will be needed for lightning conversion steps (included in kit)

Step 1: Fragment DNA

1. Prepare the following mix:

Mix	Storage Location	Volume per Sample	Volume for Mix
10x NEB Cut Smart Buffer		2.5 μL	
MspI Enzyme		1 μL	
0.2 ng/ul unmethylated phage DNA		0.5 μL	

1.1. \Box Add 4 µL of mix to the template DNA (template DNA = 300ng template DNA + nuclease free H2O for a total of 26 µL)

1.2.
□Incubate the DNA at 37°C overnight with (do not heat the lid higher than 37°C if using the thermocycler)

*Safe Stopping Point: Freeze the digested DNA at -20°C

Step 2

2. Prepare the following mix:

Mix	Storage Location	Volume per Sample	Volume for Mix
End Prep Enzyme Mix		1.5 μL	
End Repair Reaction Buffer (10x)		3.25 μL	

- 2.1. \Box Add 4.75 µL of mix to each well of the fragmented DNA (DNA volume is ~30 µL)
- 2.2.
 □Incubate for 30 minutes @ 20°C, 30 minutes @ 65°C and hold @ 4°C (Run "Neb endprep" program)
- 2.3. \Box Add the following mix to the reaction:

Make sure that adaptors are diluted 1:20 prior to use in a fresh tube!

Mix	Storage Location	Volume per Sample	Volume for Mix
NEBNext Methylated Adapter for Illumina (<u>1:20 diluted adapter</u>) **		1.25 μL	
Blunt/TA Ligase Master Mix (Ultra II)		7.5 μL	
Ligation Enhancer		0.5 μL	

2.4. □Incubate for 20 minutes @ 20°C (Run "NEB Adapter Ligate" program which will hold/pause for User Enzyme Incubation)

2.5. Take AMPure beads out of fridge to come to room temperature

2.6. \Box Add 1.5 µL USER Enzyme to each sample, pipette to mix, and incubate for 15 minutes @ 37°C (Press enter on "NEB Adapter Ligate program" to end pause and continue the program)

Step 3:Bead-Based Cleanup (1.5x)

- 3.1. \Box Add 66 µL AMPure beads to each sample and gently mix by pipetting up and down
- 3.2. □Incubate at RT for 5min
- 3.3. □Place plate on magnetic stand until the solution is clear (5 mins)
- 3.4. □Remove supernatant (KEEP BEADS)
- 3.5. DWhile on the magnetic stand, add 200 µL 80% ethanol, incubate for 30 seconds remove ethanol
- 3.6.
 □Repeat wash: while on the magnetic stand, add 200 µL 80% ethanol, incubate for 30 seconds remove ethanol

3.7. \Box After removing the ethanol from the second wash, let the beads dry for ~5-10min or until beads are no longer shiny (**do not over dry** the beads, this will reduce yield)

- 3.8.
 □Remove from magnetic stand and add 21 µL of EB buffer, mix well and incubate 5 minutes @ RT
- 3.9. □Place tubes back on magnetic stand and incubate for 5 min @ RT
- 3.10. Transfer 20 µL of supernatant to new PCR strip tube or plate

**Qubit a few samples to check that some still have DNA before proceeding with bisulfite conversion

SAFE STOPPING POINT: Freeze the adapter-ligated DNA at -20°C

Step 4:Bisulfite Conversion (EZ-96 DNA Methylation-Lightning[™] MagPrep)

- 4.1. □Add 130 µL of Lightning Conversion Reagent to 20 µL of a DNA sample in a Conversion Plate. Pipette mix 5 times.
- 4.2. □Seal the plate with film. Transfer the Conversion Plate to a thermal cycler and perform the following steps:
 - i. 98°C for 8 minutes
 - 1. 54°C for 60 minutes
 - 2. 4°C storage (for up to 20 hours)
- 4.3. \Box Pre-heat a plate heating element to 55°C.
- 4.4. □Add 600 µL of M-Binding Buffer and 10 µL of MagBinding Beads to each well of a Collection Plate.

4.5. □Transfer the samples from the Conversion Plate into the Collection Plate (containing the M-Binding Buffer and MagBinding Beads). Pipette mix 5 times.

4.6. DLet plate stand at room temperature for 5 minutes, then transfer plate to a magnetic stand for an additional 5 minutes or until beads pellet and supernatant is cleared.

4.7. □With the plate on the magnetic stand, remove the supernatant and discard. **Note:** Some beads will adhere to the sides of the well. Remove supernatant slowly to allow these beads to be pulled to the magnet as the liquid level is lowered.

4.8. □Remove the Collection Plate from the magnetic stand.

4.9. □Add 200 µL of M-Wash Buffer to the beads. Pipette mix 5 times.

4.10.□Place the plate on the magnetic stand for 3 minutes or until beads pellet.

4.11.□Remove and discard supernatant.

4.12.□Remove the Collection Plate from the magnetic stand.

4.13. \Box Add 200 µL of L-Desulphonation Buffer to the beads. Pipette mix 5 times.

4.14.□Let plate stand at room temperature (20-30°C) for 15 minutes.

4.15.□After the incubation, replace the plate on the magnetic stand for 3 minutes or until beads pellet. Remove and discard supernatant. Important: Take time for handling/re-suspension into account for the total incubation time. Adjust time as necessary to ensure that no sample remains in the L-Desulphonation Buffer for more than 20 minutes

4.16. \square Remove the Collection Plate from the magnetic stand.

4.17.□□Add 200 µL of M-Wash Buffer to the beads. Pipette mix 5 times.

4.18.□□Place the plate on the magnetic stand for 3 minutes or until beads pellet. Discard supernatant.

4.19.□Repeat M-Wash Buffer wash once.

Important: Remove as much buffer as possible after final wash to aid in the drying of the beads.

4.20.□Transfer the plate to a heating element at 55°C for 20-30 minutes to dry the beads and remove residual M-Wash Buffer. Note: Beads will change in appearance from glossy black when still wet to a dull brown when fully dry.

4.21.□Add 21 µL of M-Elution Buffer directly to the dried beads and pipette mix 5-10 times to re-suspend.

4.22.□Heat the elution at 55°C for 4 minutes then transfer the plate to the magnetic stand for 1 minute or until beads pellet.

4.23. \Box Remove the 20 μ L of the supernatant and transfer to a clean Elution Plate.

Note: It is OK if some beads are removed with the elution.

The DNA is ready for immediate analysis or can be stored at or below -20°C for later use. For long term storage, store at or below - 70°C.

**Quantification should be performed on NanoDrop using RNA settings (Factor 40) or other similar spectroscopy methods using RNA absorbance (If yields are high a second conversion round can be performed)

SAFE STOPPING POINT: Freeze the digested DNA at -20C

Step 5: PCR Amplification (Indexing) **BE SURE TO USE NEBNext INDEXES** 5.1. □Make PCR Master Mix as follows:

Mix	Storage Location	Volume per Sample	Volume for Mix
5X EpiMark Hot Start Taq Reaction Buffer		5 μL	
10mM dNTPs		0.5 μL	
EpiMark Hot Start Taq (2 units/ul)		0.125 μL	

5.2. □Add 5.625 µL of Master Mix to each well of the Adapter Ligated, BS-treated DNA (has approx. 20 µL of DNA).

- 5.3.
 □Add 0.5 µLof NEBNext Index Primer i7 to each well.
- 5.4.
 □Add 0.5 µLofNEBNext Index Primer i5 to each well. Ensure all wells are unique combinations.
- - 1. 95°C for 30 seconds
 - 2. 16 cycles of:
 - 1. 95°C for 15 seconds
 - 2. 61°C for 30 seconds
 - 3. 68°C for 30 seconds
 - 3. 68°C for 5 mins
 - 4. Hold at 4°C

Step 6: Final cleanup and quantification

- 6.1. □2:1 bead clean up
- a. Add 50 µL AMPure Beads to each 25 µL reaction (gently pipetting to mix)
- 6.2. □Incubate @ RT for 5 mins
- 6.3. □Place plate on magnetic stand until the solution is clear (5 mins)
- 6.4. □Remove supernatant (KEEP BEADS)
- 6.5. DWhile on the magnetic stand, add 200 µL 80% ethanol, incubate for 30 seconds remove ethanol
- 6.6. DRepeat wash: While on the magnetic stand, add 200 µL 80% ethanol, incubate for 30 seconds remove ethanol
- 6.7. \Box After removing the ethanol from the second wash, let the beads dry for ~5-10 min or until beads are no longer shiny (**do not over dry** the beads, this will reduce yield)
- 6.8. □Remove from magnetic stand and add 22 µL of nuclease-free H2O, mix very well and incubate 5 minutes @ RT
- 6.9.
 □Place tubes back on magnetic stand and incubate for 5 min @ RT
- 6.10. Transfer 21 µL of supernatant to new "candy cane" tube or plate
- 6.11. Quantify and visualize libraries on Fragment Analyzer